مروری بر ژن های دخیل در مقاومت دارویی کلبسیلا پنومونیه

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکتری، گروه میکروبیولوژی، دانشکده علوم نوین، واحد علوم پزشکی، دانشگاه آزاد اسلامی، تهران، ایران

2 کارشناسی ارشد، گروه میکروبیولوژی، دانشکده دامپزشکی، دانشگاه ارومیه، ارومیه، ایران

3 کارشناسی ارشد گروه میکروبیولوژی، دانشکده علوم، دانشگاه بابلسر، مازندران، ایران

4 دانشجوی دکتری، گروه میکروب شناسی پزشکی دانشکده پزشکی، دانشگاه علوم پزشکی قزوین، قزوین، ایران

10.22038/nnj.2025.90818.1511

چکیده

مقدمه و هدف: کلبسیلا پنومونیه باکتری گرم منفی و عضو خانواده انتروباکتریاسه بوده و موجب عفونت های بیمارستانی در بیماران بستری می شود. هدف از مطالعه مروری حاضر بررسی مکانیسم و دسته بندی ژن های دخیل در ایجاد مقاومت در کلبسیلا پنومونیه می باشد.
مواد و روش‏ها: این مطالعه از نوع توصیفی بوده که با بررسی منابع علمی معتبر بین المللی از جمله Scopus، Pub Med، Research Gate و همچنین موتور جستجوگر Google Scholar استفاده گردید. در این بررسی از کلیدواژگان مهمی از جمله کلبسیلا پنومونیه، مقاومت آنتی بیوتیکی، ژن های کد کننده آنزیم های بتا-لاکتامازی،آمینوگلیکوزیدی، فلوروکینولون ها، پلی میکسین، فسفومایسین و تیجی سایکلین استفاده شد.
یافته‏ ها: با بررسی 70 مقاله بین سال های 2005 الی 2023، تعداد 42 مقاله متناسب با موضوع بررسی وارد چرخه مطالعه شدند. مقالاتی که امکان دسترسی آزاد (Open Access) را نداشتند و همچنین بصورت چکیده در کنگره های ارائه شده بودند از چرخه بررسی مقالات حذف شدند.
نتیجه‏ گیری: در محیط های بیمارستانی و درمانگاهی به دلیل مصرف آنتی بیوتیک های وسیع الطیف، میکروارگانیسم های فرصت طلب مولد عفونت از جمله کلبسیلا پنومونیه همواره در مواجهه انواع آنتی بیوتیک ها قرار دارند که این مسئله باعث ایجاد ژن های مقاومت در این باکتری می شوند و در جامعه به دلیل رعایت نکردن پروفایل های درمانی، میزان مقاومت در بیماران رو به افزایش می باشد.

کلیدواژه‌ها


[1] Hu Y, Anes J, Devineau S, Fanning S. Klebsiella pneumoniae: Prevalence, Reservoirs, Antimicrobial Resistance, Pathogenicity, and Infection: A Hitherto Unrecognized Zoonotic Bacterium. Foodborne Pathog Dis. 2021; 18(2):63–84.
[2] Gonzalez-Ferrer S, Peñaloza HF, Budnick JA, Bain WG, Nordstrom HR, Lee JS, et al. Finding order in the chaos: Outstanding questions in Klebsiella pneumoniae athogenesis. Infect Immun. 2021; 89(4):1–17.
[3] Nikbakht Z, Rafighi D, Salehi Sh, Taghinejad J. A Review of the Pathogenesis and Epidemiology of Klebsiella Pneumoniae Bacterria. 4 th International Conference on new findings in medical sceinces and hegiene with a health promotions approach. Paris-France, 2023:1-11. [in Persian]
[4] Li Y, Kumar S, Zhang L, Wu H, Wu H. Characteristics of antibiotic resistance mechanisms and genes of Klebsiella pneumoniae. Open Medicine. 2023:12; 18(1):20230707
[5] Yasin F, Assad S, Talpur AS, Zahid M, Malik SA. Combination therapy for multidrug-resistant Klebsiella pneumoniae urinary tract infection. Cureus. 2017:22; 9(7).
[6] Bassetti M, Righi E, Carnelutti A, Graziano E, Russo A. Multidrug-resistant Klebsiella pneumoniae: challenges for treatment, prevention and infection control. Expert review of anti-infective therapy. 2018; 16(10):749-61.
[7] F. Prestinaci, P. Pezzotti, and A. Pantosti, “Antimicrobial resistance: a global multifaceted phenomenon,” Pathogens and Global Health, 2015; 109(7): 309–318.
[8] Jacobs DM, Safir MC, Huang D, Minhaj F, Parker A, Rao GG. Triple combination antibiotic therapy for carbapenemase-producing Klebsiella pneumoniae: a systematic review. Annals of clinical microbiology and antimicrobials. 2017; 16(1):1-2.
[9] Ferreira RL, Da Silva BC, Rezende GS, Nakamura-Silva R, Pitondo-Silva A, Campanini EB, Brito MC, da Silva EM, Freire CC, Cunha AF, Pranchevicius MC. High prevalence of multidrug-resistant Klebsiella pneumoniae harboring several virulence and β-lactamase encoding genes in a Brazilian intensive care unit. Frontiers in microbiology. 2019; 9:3198.
[10] Sikarwar AS, Batra HV. Prevalence of antimicrobial drug resistance of Klebsiella pneumoniae in India. International Journal of Bioscience, Biochemistry and Bioinformatics. 2011; 1(3):211.
[11] Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Frontiers in microbiology. 2019; 10:539
[12] Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed research international. 2016; 2016.
[13] KONG KF, Schneper L, Mathee K. Beta‐lactam antibiotics: from antibiosis to resistance and bacteriology. Apmis. 2010; 118(1):1-36.
[14] Bush K, Bradford PA. Β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harbor perspectives in medicine. 2016; 6(8).
[15] Zeng X, Lin J. Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Frontiers in microbiology. 2013; 4:128.
[16] Sirot D, Sirot J, Labia R, Morand A, Courvalin P, Darfeuille-Michaud A, Perroux R, Cluzel R. Transferable resistance to third-generation cephalosporins in clinical isolates of Klebsiella pneumoniae: identification of CTX-1, a novel beta-lactamase. J Antimicrob Chemother. 1987; 20(3):323-34.
[17] Roshdi Maleki M, Taghinejad J. Prevalence of Extended-spectrum Beta-lactamases (ESBL) Types blaTEM and blaSHV in Klebsiella pneumoniae Strains Isolated from Clinical Samples by PCR in Miandoab, West Azerbaijan. Iran J Med Microbiol. 2021; 15 (4):458-464.
[18] Juan-Carlos Jiménez-Castellanos, Wan Ahmad Kamil Wan Nur Ismah, Yuiko Takebayashi, Jacqueline Findlay, Thamarai Schneiders, Kate J Heesom, Matthew B Avison, Envelope proteome changes driven by RamA overproduction in Klebsiella pneumoniae that enhance acquired β-lactam resistance, Journal of Antimicrobial Chemotherapy, Volume 73, Issue 1, January 2018, Pages 88–94.
[19] Wang G, Zhao G, Chao X, Xie L, Wang H. The characteristic of virulence, biofilm and antibiotic resistance of klebsiella pneumoniae. Int J Environ Res Public Health. 2020; 17(17):1–17.
[20] Pagkalis S, Mantadakis E, Mavros MN, Ammari C, Falagas ME. Pharmacological considerations for the proper clinical use of aminoglycosides. Drugs. 2011; 71(17):2277–94.
[21] Nikbakht Z, Anzabi Y. Evaluation of the frequency of rmtB and aac (6')Ib genes in strains resistant to gentamicin and amikacin in Klebsiella pneumoniae bacteria isolated from clinical samples of Alinasab Hospital, Tabriz. Iranian Journal of Infectious Diseases and Tropical Medicine.2023; 100(28):31-43. [in Persian]
[22] Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nature reviews microbiology. 2015; 13(1): 42-51.
[23] Doi Y, Wachino JI, Arakawa Y. Aminoglycoside resistance: the emergence of acquired 16S ribosomal RNA methyltransferases. Infectious Disease Clinics. 2016; 30(2):523-37.
[24] Srinivasan VB, Venkataramaiah M, Mondal A, Vaidyanathan V, Govil T. Functional characterization of a novel outer membrane porin KPNO. Regulated by PhoBR Two-Component System in Klebsiella pneumoniae NTUH-K2044. PLoS ONE. 2012; 7(7):e41505.
[25] San Millan A, Santos-Lopez A, Ortega-Huedo R, Bernabe-Balas C, Kennedy SP, Gonzalez-Zorn B. Small-plasmid-mediated antibiotic resistance is enhanced by increases in plasmid copy number and bacterial fitness. Antimicrob Agents Chemother. 2015; 59(6):3335-41.
[26] Redgrave LS, Sutton SB, Webber MA, Piddock LJ. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014; 22(8):438-45.
[27] Chen X, Zhang W, Pan W, Yin J, Pan Z, Gao S, Jiao X. Prevalence of qnr, aac (6′)-Ib-cr, qepA, and oqxAB in Escherichia coli isolates from humans, animals, and the nvironment. Antimicrobial agents and chemotherapy. 2012; 56(6):3423-7.
[28] Idris N, Leong KH, Wong EH, Abdul Rahim N. Unveiling synergism of polymyxin B with chloramphenicol derivatives against multidrug-resistant (MDR) Klebsiella pneumoniae. The Journal of Antibiotics. 2023:1-9.
[29] Liu P, Chen S, Wu ZY, Qi M, Li XY, Liu CX. Mechanisms of fosfomycin resistance in clinical isolates of carbapenem-resistant Klebsiella pneumoniae. Journal of global antimicrobial resistance. 2020; 22:238-43.
[30] Liu Y, Cheng Y, Yang H, Hu L, Cheng J, Ye Y, Li J. Characterization of extended-spectrum β-lactamase genes of Shigella flexneri isolates with fosfomycin resistance from patients in China. Ann Lab Med. 2017; 37(5):415-9.
[31] Cao XL, Shen H, Xu YY, Xu XJ, Zhang ZF, Cheng L, Chen JH, Arakawa Y. High prevalence of fosfomycin resistance gene fosA3 in blaCTX-M-harbouring Escherichia coli from urine in a Chinese tertiary hospital during 2010–2014. Epidemiology & Infection. 2017; 145(4):818-24.
[32] Falagas ME, Athanasaki F, Voulgaris GL, Triarides NA, Vardakas KZ. Resistance to fosfomycin: mechanisms, frequency and clinical consequences. International journal of antimicrobial agents. 2019; 53(1):22-8.
[33] Golan, Y. Empiric therapy for hospital-acquired, Gram-negative complicated intra-abdominal infection and complicated urinary tract infections: A systematic literature review of current and emerging treatment options. BMC Infect. Dis. 2015, 15, 313.
[34] Osei Sekyere, J.; Govinden, U.; Bester, L.A.; Essack, S.Y. Colistin and tigecycline resistance in carbapenemase-producing Gram-negative bacteria: Emerging resistance mechanisms and detection methods. J. Appl. Microbiol. 2016, 121, 601–617.
[35] Fang L, Chen Q, Shi K, Li X, Shi Q, He F, Zhou J, Yu Y, Hua X. Step-wise increase in tigecycline resistance in Klebsiella pneumoniae associated with mutations in ramR, lon and rpsJ. PloS one. 2016; 11(10): e0165019
[36] Kallman, O.; Motakefi, A.; Wretlind, B.; Kalin, M.; Olsson-Liljequist, B.; Giske, C.G. Cefuroxime non-susceptibility in multidrug-resistant Klebsiella pneumoniae overexpressing ramA and acrA and expressing ompK35 at reduced levels. J. Antimicrob. Chemother. 2008, 62, 986–990.
[37] Wang G, Zhao G, Chao X, Xie L, Wang H. The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiella pneumoniae. Int J Environ Res Public Health. 2020; 17(17):6278.
[38] Wu Q, Zhang Y, Han L, Sun J, Ni Y. Plasmid-mediated 16SrRNA methylases in aminoglycoside resistant Enterobacteriaceae isolates in Shanghai, China. Antimicrobial agents and chemotherapy. 2009;53(1):271-2.
[39] Kang HY, Kim J, Seol SY, Lee YC, Lee JC, Cho DT. Characterization of conjugative plasmids carrying antibiotic resistance genes encoding 16S rRNA methylase, extended-spectrum beta-lactamase, and/or plasmid-mediated AmpC beta-lactamase. The Journal of Microbiology. 2009;47(1):68-75.
[40] Ahmadian Alashti F,High Frequency of 16SRibosomal RNA Methyltransferases among klebsiella pneumonia Isolates :First Report ofrmtA,rmtD,rmtE and rmtF Resistance Genes in Iran.Infection Epidmiology and microbiology.2020;6(3):153-163.
[41] Peymani A M-RM, Sanikhani, Pahlevan AA. Extended Spectrum β-lactamases and TEM and SHV Genotypes in Klebsiella pneumoniae. Iranian Journal of Infectious Diseases. 2013;18(60):15-20.
[42] Archin T, Afzalian E, Kargar M, Ghasemi Y. Molecular identification of shv, tem, ctx-m β lactamases genes and antibiotics resistance pattern of k. pneumoniae isolates collected from icu patients of namazi hospital, shiraz, iran. Armaghane danesh. 2014;18(10):816-25.