Resistance mechanism to various antibiotics: A Review Study

Document Type : Review Article

Authors

1 MSc. Department of Microbiology, Urmia Branch, Islamic Azad University, Urmia, Iran

2 MSc. Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

3 BSc. Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran

10.22038/nnj.2025.79303.1445

Abstract

Background and Aims: Antibiotics, discovered as powerful tools for eliminating bacterial infections in 1928, have faced widespread misuse in recent years. Consequently, most pathogenic bacteria have acquired resistance genes against antibiotics to combat their lethal effects. The aim of this review study is to examine the mechanisms of antibiotic resistance in bacteria.
Materials and Methods: This study utilized reputable scientific databases such as Research Gate, Medline, PubMed, and Google Scholar for article searches. Keywords included drug resistance, antibiotic resistance mechanism, resistance pattern, aminoglycosides, beta-lactams, carbapenems, meropenems, penicillins, antibiotics affecting the cell wall, glycopeptides, and antibiotics targeting bacterial protein synthesis.
Results: Out of 70 articles reviewed spanning from 1990 to 2022, 30 articles relevant to the topic were included in the study. Articles requiring payment and those presented solely as abstracts at conferences were excluded from the analysis.
Conclusion: The type and mechanism of antibiotic resistance in bacteria are dependent on the family, genus, and strain. Differences in resistance levels can be significant even at the strain level. The geographical variation in antibiotic resistance patterns underscores the importance of this issue.

Keywords


[1]     Levy SB, Marshall B: Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004, 10:122–129. DOI: 10.1038/nm1145
[2]     Maranan MC, Moreira B, Boyle-Vavra S, et al.: Antimicrobial resistance in staphylococci:Epidemiology, molecular mechanisms, and clinical relevance. Infect Dis Clin North Am. 1997, 11:813–849. DOI: 10.1016/s0891-5520(05)70392-5
[3]     Levy SB: From tragedy the antibiotic age is born. The Antibiotic Paradox. Springer; 1992. 1–12. https://doi.org/10.1007/978-1-4899-6042-9_1
[4]     Yousefi F, Parvini Kohneshahry M, Soldozi A, Taghinejad J. Investigating the antibacterial activity of 2-(3-methoxyphenyl)-1, 3, 4-oxadiazole compound. 8th International Conference on Researches in Science & Engineering & 5th International Congress on Civil, Architecture and Urbansim in Asia. Bangkok-Thailand, 24 August 2023. [In Persian] https://civilica.com/doc/1947909
[5]     Aminov RI: A brief history of the antibiotic era: lessons learned and challenges for the future .Front Microbiol. 2010, 1:134. DOI: 10.3389/fmicb.2010.00134
[6]     Davies J, Davies D: Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev.2010, 74:417–433. DOI: 10.1128/MMBR.00016-10
[7]     Chopra R, Alderborn G, Podczeck F, et al.: The influence of pellet shape and surface Properties on the drug release from uncoated and coated pellets. Int J Pharm. 2002, 239:171–178. DOI: 10.1016/s0378-5173(02)00104-7
[8]     Levy SB: The challenge of antibiotic resistance. Scientific American. 1998, 278:32–39. DOI: 10.1038/scientificamerican0398-46
[9]     Grigoryan L, Burgerhof JG, Haaijer-Ruskamp FM, et al.: Is self-medication with antibiotics in Europe driven by prescribed use? J Antimicrob Chemother. 2007, 59:152–156. https://doi.org/10.1093/jac/dkl457
[10]   Nikbakht Z, Taghinejad J, Afshar S, Yousefi F. Antibiotic resistance mechanism of aminoglycosides. The first national conference new findings in microbiology and production of biological products. Shiraz, Iran.2023:1-13. [In Persian] https://civilica.com/doc/1812183
[11]   Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. International journal of antimicrobial agents. 2010; 35(4):322-32.DOI: 10.1016/j.ijantimicag.2009.12.011
[12]   Lorian V, editor. Antibiotics in laboratory medicine. Lippincott Williams & Wilkins; 2005.
[13]   KONG KF, Schneper L, Mathee K. Beta‐lactam antibiotics: from antibiosis to resistance and bacteriology. Apmis. 2010; 118(1):1-36. DOI: 10.1111/j.1600-0463.2009.02563.x
[14]   Taghinejad J, Barati B, Sadeghi A. A study of the drug resistance pattern of Group B Streptococcus isolated from urinary samples in the city of Salmas during the year 2015. NCMBJ 2018; 8 (30):79-84. [In Persian] DOR: 20.1001.1.22285458.1397.8.30.9.4
[15]   Yip, Derek W., and Valerie Gerriets. "Penicillin.2020:20-32.
[16]   Zhanel GG, Wiebe R, Dilay L, Thomson K, Rubinstein E, Hoban DJ, Noreddin AM, Karlowsky JA. Comparative review of the carbapenems. Drugs. 2007; 67:1027-52. DOI: 10.2165/00003495-200767070-00006
[17]   Afshar S, Dehghani M, Rafighi D, Yousefi F,Taghinejad J. Investigating the pattern of drug resistance among bacteria isolated from women suffering from urinary tract infections in Savojbolagh. Iranian Journal of Biological Sciences, 2022; 4(3):83-92. [in Persian] doi:10.30495/zisti.2023.1981288.1156
[18]   Salmon-Rousseau A, Martins C, Blot M, Buisson M, Mahy S, Chavanet P, Piroth L. Comparative review of imipenem/cilastatin versus meropenem. Médecine et Maladies Infectieuses. 2020; 50(4):316-22. DOI: 10.1016/j.medmal.2020.01.001
[19]   Yoon YK, Yang KS, Lee SE, Kim HJ, Sohn JW, Kim MJ. Effects of Group 1 versus Group 2 carbapenems on the susceptibility of Acinetobacter baumannii to carbapenems: a before and after intervention study of carbapenem-use stewardship. PLoS One. 2014; 9(6):e99101. doi: 10.1371/journal.pone.0099101
[20]   Tahri A, Ksouda K, Kallel R, Daoud S, Boudawara T, Zeghal KM, Sahnoun Z. A carbapenem antibiotic imipenem/cilastatin induces an oxidative stress-status and gonadotoxic effects in «wistar» rats. Biomedicine & Pharmacotherapy. 2017; 95:308-16. DOI: 10.1016/j.biopha.2017.08.039
[21]   Rafighi D, Taghinejad J. Review on Pathogenicity and Drug-Resistance Mechanisms at Acinetobacter Baumannii. Paramedical Sciences and Military Health. 2022; 17(3):65-75. [in Persian]
[22]   Elshamy AA, Aboshanab KM. A review on bacterial resistance to carbapenems: epidemiology, detection and treatment options. Future science OA. 2020; 6(3):FSO438. doi: 10.2144/fsoa-2019-0098
[23]   Magdaleno A, Saenz ME, Juárez AB, Moretton J. Effects of six antibiotics and their binary mixtures on growth of Pseudokirchneriella subcapitata. Ecotoxicology and Environmental Safety. 2015; 113:72-8. DOI: 10.1016/j.ecoenv.2014.11.021
[24]   Selvi A, Das D, Das N. Potentiality of yeast Candida sp. SMN04 for degradation of cefdinir, a cephalosporin antibiotic: kinetics, enzyme analysis and biodegradation pathway. Environmental technology. 2015; 36(24):3112-24. DOI: 10.1080/09593330.2015.1054318
[25]   Blaskovich MA, Hansford KA, Butler MS, Jia Z, Mark AE, Cooper MA. Developments in glycopeptide antibiotics. ACS Infectious Diseases. 2018; 4(5):715-35. doi: 10.1021/acsinfecdis.7b00258
[26]   Butler MS, Hansford KA, Blaskovich MA, Halai R, Cooper MA. Glycopeptide antibiotics: back to the future. The Journal of Antibiotics. 2014; 67(9):631-44. DOI: 10.1038/ja.2014.111
[27]   Neda Soleimani, Molecular Biology of Aminoglycoside and Relationship of Aminoglycoside Modifying Enzymes with Altering Resistance. Alborz University of Medical Sciences, 2017; 6,(4): 227-240.[In Persian] DOI: 10.29252/aums.6.4.227
[28]   Leung LM. Molecular epidemiology of 16S rRNA methylase genes in Escherichia colifrom humans and animals. HKU Theses Online (HKUTO). 2012.
[29]   Irfan M, Almotiri A, AlZeyadi ZA. Antimicrobial resistance and its drivers—A review. Antibiotics. 2022; 11(10):1362. https://doi.org/10.3390/antibiotics11101362
[30]   Liu Y, Yang K, Zhang H, Jia Y, Wang Z. Combating antibiotic tolerance through activating bacterial metabolism. Frontiers in Microbiology. 2020; 11:577564. https://doi.org/10.3389/fmicb.2020.577564