The Study of Biofilm and slime formation coded by icaA and icaD genes in Methicillin resistant Staphylococcus aureus containing mecA gene in Shahrud County (1396-1397)

Document Type : Original article

Authors

1 Assistant Professor of Microbiology, Department of Microbiology, Islamic Azad University, Damghan Branch, Damghan, Iran

2 MSc in Microbiology, Department of Microbiology, Islamic Azad University, Damghan Branch, Damghan, Iran

3 Associate Professor of Microbiology, Department of Microbiology, Islamic Azad University, Shahrekord Branch, Shahrekord, Iran

Abstract

Introduction: Currently, scientists hold the conviction that attachment and biofilm formation are theinitial factors in bacterial pathogenesis. The present study aimed to investigate the coexistence oficaA and icaD genes involved in the slime and biofilm production of methicillin-resistantStaphylococcus aureus containing mecA gene and their relations to its pathogenesis.
Materials and Methods: In this descriptive cross-sectional study, 100 wound samples werecollected from one of Shahruod hospiltals in 2017. The isolation and purification of Staphylococcusaureus was performed. It should be noted that resistance to methicillin was investigated by KirbyBauer test. The study of slime production and biofilm formation were carried out using Congo redagar and 96 microtiter plate-based methods, respectively. The examination of the relationshipbetween mecA, icaA, and icaD genes was performed by Multiplex polymerase chain reaction.
Results: In this study, 65 methicillin-resistant Staphylococcus aureus samples were isolated of which67% and 66.6% were able to form strong slimes with black colonies and strong biofilms,respectively. The coexistence of mecA, icaA, and icaD in 89.23 of the samples was observed.
Conclusion: According to the results of the present study, there was a relation between pathogenesisand antibiotic resistance in methicillin-resistant Staphylococcus aureus, which should be consideredfor the treatment of the infection caused by this bacterium

Keywords


1. Harkins CP, Pichon B, Doumith M, Parkhill J, Westh H,Tomasz A, et al. Methicillin-resistant Staphylococcusaureus emerged long before the introduction ofmethicillin into clinical practice. Genome Biol. 2017;18(1):130.
2. Aung KT, Hsu LY, Koh TH, Hapuarachchi HC, Chau
ML, Gutiérrez RA, et al. Prevalence of methicillinresistant Staphylococcus aureus (MRSA) in retail foodin Singapore. Antimicrob Resist Infect Control. 2017;6:94.
3. Zh XY, Zhu QY. Evolution of methicillin-resistant
Staphylococcus aureus: evidence of positive selectionin a penicillinbinding protein (PBP) 2a coding genemecA. Infect Genet Evol. 2018; 59:16-22.
4. Bohlouli P, Nahaei MR, Farajnia S, Varshochi M,
Ghojazadeh M, Akbari Dibavar M, et al. Cassettechromosome mec typing of methicillin-resistantStaphylococcus aureus isolates collected from Sinaand Imam Reza hospitals of Tabriz. Med J TabrizUniv Med Sci Health Ser. 2016; 38(4):12-21. [inPersian]
5. McCarthy H, Rudkin JK, Black NS, Gallagher L,
O'Neill E, O'Gara JP. Methicillin resistance and thebiofilm phenotype in Staphylococcus aureus. FrontCell Infect Microbiol. 2015; 5:1.
6. Ciftci A, Findik A, Onuk EE, Savasan S. Detection of
methicillin resistance and slime factor production ofStaphylococcus aureus in bovine mastitis. Braz JMicrobiol. 2009; 40(2):254-61.
7. Neopane P, Nepal HP, Shrestha R, Uehara O, Abiko Y.
In vitro biofilm formation by Staphylococcus aureusisolated from wounds of hospital-admitted patientsand their association with antimicrobial resistance. IntJ Gen Med. 2018; 11:25-32.
8. Rohde H, Frankenberger S, Zahringer U, Mack D.
Structure, function and contribution of polysaccharideintercellular adhesion (PIA) to Staphylococcusepidermidis biofilm formation and pathogenesis of  biomaterial-associated infections. Eur J Cell Biol.
2010, 89(1):103-11
9. Pozzi C, Waters EM, Rudkin JK, Schaeffer C, Lohan
AJ, Tong P, et al. Methicillin resistance alters thebiofilm phenotype and attenuates virulence inStaphylococcus aureus device-associated infections.PLoS Pathog. 2012; 8(4):e1002626.
10. Oyama T, Miyazaki M, Yoshimura M, Takata T,
Ohjimi H, Jimi S. Biofilm-forming methicillinresistant Staphylococcusaureus survive in kupffercells and exhibit high virulence in mice. Toxins(Basel). 2016; 8(7):E198.
11. Arciola CR, Campoccia D, Ravaioli S, Montanaro L.
Polysaccharide intercellular adhesin in biofilm:structural andregulatory aspects. Front Cell InfectMicrobiol. 2015; 5:7.
12. Fitzpatrick F, Humphreys H, O’Gara JP. Evidence
for icaADBC-independent biofilm developmentmechanism in methicillin-resistant Staphylococcusaureus clinical isolates. J Clin Microbiol. 2005,43(4):1973-6.
13. Diemond-Hernández B, Solórzano-Santos F, LeañosMiranda B, Peregrino-Bejarano L, Miranda-Novales G.
Production of icaADBC encoded polysaccharideintercellular adhesin and therapeutic failure inpaediatric patients with staphylococcal device-relatedinfections. BMC Infect Dis. 2010; 10(1):68.
14. Satorres SE, Alcaráz LE. Prevalence of icaA and icaD
genes in Staphylococcus aureus and Staphylococcusepidermidis strains isolated from patients and hospitalstaff. Cent Eur J Public Health. 2007; 15(2):87-90.
15. Bimanand L, Taherikalani M, Jalilian FA, Sadeghifard
N, Ghafourian S, Mahdavi Z, et al. Associationbetween biofilm production, adhesion genes and drugsresistance in different SCCmec types of methicillinresistant Staphylococcus aureus strainsisolated fromseveral major hospitals of Iran. Iran J Basic Med Sci.2018; 21(4):400.
16. Khoei F, Mobaiyen H, Nahaei MR, Sadeghi
Mohammadi S. Antibiotic resistance pattern andfrequency of mecA Gene in Staphylococcus aureusIsolated from Shohada Hospital, Tabriz. J MedMicrobiol Infect Dis. 2014; 2(3):105-8.
17. Deurenberg RH, Vink C, Kalenic S, Friedrich AW,
Bruggeman CA, Stobberingh EE. The molecularevolution of methicillin-resistant Staphylococcusaureus. Clin Microbiol Infect. 2007; 13(3):222-35.
18. Ba X, Harrison EM, Edwards GF, Holden MT, Larsen
AR, Petersen A. Novel mutations in penicillin-bindingprotein genes in clinical Staphylococcus aureusisolates that are methicillin resistant on susceptibilitytesting, but lack the mec gene. JAntimicrobChemother. 2014; 69(3):594-7.
19. Kouidhi B, Zmantar T, Hentati H, Bakhrouf A. Cell
surface hydrophobicity, biofilmformation, adhesivesproperties and molecular detection of adhesins genesin Staphylococcus aureus associated to dental caries.Microbial Pathog. 2010; 49(1-2):14-22.
20. Gowrishankar S, Kamaladevi A, Balamurugan K,
Pandian SK. In Vitro and In Vivo biofilmcharacterization of methicillin-resistant staphylococcusaureus from patients associated with pharyngitisinfection. Biomed Res Int. 2016; 2016:1289157.
21. Nourbakhsh F, Namvar AE. Detection of genes
involved in biofilm formation in Staphylococcusaureus isolates. GMS Hyg Infect Control. 2016;11:Doc07.
22. O’Neill E, Pozzi C, Houston P, Smyth D, Humphreys
H, Rabinson DA, et al. Association betweenmethicillin susceptibility and biofilm regulation inStaphylococcus aureus isolates from device-relatedinfections. J Clin Microbiol. 2007; 45(5):1379-88.
23. Gad GF, El-Feky MA, El-Rehewy MS, Hassan MA,
Abolella H, El-Baky RM. Detection of icaA, icaDgenes and biofilm production by Staphylococcusaureus and Staphylococcus epidermidis isolated fromurinary tract catheterized patients. J Infect Dev Ctries.2009; 3(5):342-51.
24. Khashei R, Ebrahim-Saraie H, Motamedifar M,
Zalipour M, Sarvari J. Detection of icaA/icaD genesand biofilm formation among clinical isolates ofStaphylococcus aureus from Shiraz, Iran. J MedBacteriol. 2015; 4(1):35-42.