اثرات محافظتی کروسین در برابر بیماری های قلبی عروقی و سکته مغزی

نوع مقاله : مقاله مروری

نویسندگان

1 -علوم تشریح و بیولوژی سلولی،دانشکده پزشکی، دانشگاه علوم پزشکی مشهد، مشهد، ایران -کمیته تحقیقات دانشجویی، دانشکده پزشکی، دانشگاه

2 گروه علوم تشریح و بیولوژی سلولی، دانشکده پزشکی، دانشگاه علوم پزشکی مشهد، مشهد، ایران.

3 دانشگاه علوم پزشکی مشهد – دانشکده پزشکی – گروه علوم تشریحی و بیولوژی سلولی

چکیده

زمینه و هدف: بیماری های قلبی عروقی جزء بیماری های شایع و کشنده در جهان بوده و در ایران نیز عامل اصلی مرگ و میر و از کارافتادگی می باشند. هدف از این مطالعه، بررسی اثرات کروسین بر این بیماری ها بود.
مواد و روش کار: این مقاله مروری از طریق جستجوی مقالات مرتبط موجود در پایگاه های اطلاعاتی بین المللی از جمله اسکوپوس، پاب مد، وب آو ساینس و گوگل اسکالر و با جستجوی واژگان کلیدی کروسین، بیماری های قلبی عروقی، آترواسکلروزیس، فشار خون شریانی، انفارکتوس قلبی و سکته مغزی نگارش شد.
نتایج: در بروز و پیشروی بیماری های قلبی عروقی و سکته مغزی عوامل متعددی همچون استرس اکسیداتیو، التهاب، آپوپتوز، پیروپتوز (Pyroptosis)، اختلال میتوکندریایی و اختلال در عملکرد اندوتلیوم دخیل اند. از طرفی کروسین با دارا بودن اثرات ضد استرس اکسیداتیوی، ضد التهابی، ضد آپوپتوزی، ضد پیروپتوزی و همچنین تنظیم اتوفاژی قادر است اثرات محافظتی متعددی در برابر بیماری های قلبی عروقی و سکته مغزی از خود نشان دهد. کروسین با جلوگیری از کاهش بیان پروتئین های اتصالی همچون ZO-1 و اوکلودین نقش محافظتی در برابر اختلال اندوتلیالی داشته و همچنین با کاهش بیان متالوپروتئینازهای ماتریکسی، از به هم ریختگی سد خونی مغزی جلوگیری کرده و با کاهش بیان مارکرهای اتوفاژی همچون p-AMPK/AMPK، LC3-Ⅱ/I وULK1 میزان مرگ سلولی و حجم انفارکتوس را در مغز کاهش می دهد.
نتیجه گیری: با توجه به پتانسیل درمانی بالا، کروسین می تواند به عنوان یک عامل درمانی بر علیه بیماری های قلبی عروقی و سکته مغزی مورد توجه قرار گیرد.

کلیدواژه‌ها


1.          Frąk W, Wojtasińska A, Lisińska W, Młynarska E, Franczyk B, Rysz J. Pathophysiology of Cardiovascular Diseases: New Insights into Molecular Mechanisms of Atherosclerosis, Arterial Hypertension, and Coronary Artery Disease. Biomedicines. 2022 Aug 10;10(8):1938. doi: 10.3390/biomedicines10081938.
2.          Shamsi A and Ebadi A. Risk Factors of Cardiovascular Diseases in Elderly People. Iranian Journal of Critical Care Nursing. 2011;3(4): 187-192.
3.          Kocaman G, Altinoz E, Erdemli ME, Gul M, Erdemli Z, Zayman E, Bag HGG, Aydın T. Crocin attenuates oxidative and inflammatory stress-related periodontitis in cardiac tissues in rats. Adv Clin Exp Med. 2021 May;30(5):517-524. doi: 10.17219/acem/133753.
4.          Demir M, Altinoz E, Elbe H, Bicer Y, Yigitturk G, Karayakali M, Ballur AFH. Effects of pinealectomy and crocin treatment on rats with isoproterenol-induced myocardial infarction. Drug Chem Toxicol. 2022 Nov;45(6):2576-2585. doi: 10.1080/01480545.2021.1977025.
5.         Zhang H, Lin J, Shen Y, Pan J, Wang C, Cheng L. Protective Effect of Crocin on Immune Checkpoint Inhibitors-Related Myocarditis Through Inhibiting NLRP3 Mediated Pyroptosis in Cardiomyocytes via NF-κB Pathway. J Inflamm Res. 2022 Mar 5;15:1653-1666. doi: 10.2147/JIR.S348464.
6.          Yang H, Li X, Liu Y, Li X, Li X, Wu M, Lv X, Chunhua C, Ding X, Zhang Y. Crocin Improves the Endothelial Function Regulated by Kca3.1 Through ERK and Akt Signaling Pathways. Cell Physiol Biochem. 2018;46(2):765-780. doi: 10.1159/000488735.
7.          Fani M, Mohammadipour A, Ebrahimzadeh-Bideskan A. The effect of crocin on testicular tissue and sperm parameters of mice offspring from mothers exposed to atrazine during pregnancy and lactation periods: An experimental study. Int J Reprod Biomed. 2018 Aug;16(8):519-528. PMID: 30288486; PMCID: PMC6163052.
8.          Ebrahimi B, Vafaei Sh, Rastegar-Moghaddam SHR, Hosseini M, Tajik Yabr F, Mohammadipour A. Crocin Administration from Childhood to Adulthood Increases Hippocampal Neurogenesis and Synaptogenesis in Male Mice. Journal of Kerman University of Medical Sciences. 2021; 28(3):243-251. Doi: 10.22062/jkmu.2021.91664.
9.          Bastani S, Vahedian V, Rashidi M, Mir A, Mirzaei S, Alipourfard I, Pouremamali F, Nejabati H, Kadkhoda J, Maroufi NF, Akbarzadeh M. An evaluation on potential anti-oxidant and anti-inflammatory effects of Crocin. Biomed Pharmacother. 2022 Sep;153:113297. doi: 10.1016/j.biopha.2022.113297.
10.        Ali A, Yu L, Kousar S, Khalid W, Maqbool Z, Aziz A, Arshad MS, Aadil RM, Trif M, Riaz S, Shaukat H, Manzoor MF, Qin H. Crocin: Functional characteristics, extraction, food applications and efficacy against brain related disorders. Front Nutr. 2022 Dec 13;9:1009807. doi: 10.3389/fnut.2022.1009807.
11.        Li X, Liu Y, Cao A, Li C, Wang L, Wu Q, Li X, Lv X, Zhu J, Chun H, Laba C, Du X, Zhang Y, Yang H. Crocin Improves Endothelial Mitochondrial Dysfunction via GPx1/ROS/KCa3.1 Signal Axis in Diabetes. Front Cell Dev Biol. 2021 Mar 12;9:651434. doi: 10.3389/fcell.2021.651434.
12.        Wu Y, Pan RR, Geng P. [The effect of Crocin against hypoxia damage of myocardial cell and its mechanism]. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2010 Nov;26(4):453-7. Chinese. PMID: 21328986.
13.        Azami S, Shahriari Z, Asgharzade S, Farkhondeh T, Sadeghi M, Ahmadi F, Vahedi MM, Forouzanfar F. Therapeutic Potential of Saffron (Crocus sativus L.) in Ischemia Stroke. Evid Based Complement Alternat Med. 2021 Mar 2;2021:6643950. doi: 10.1155/2021/6643950.
14.        Baghishani F, Mohammadipour A, Hosseinzadeh H, Hosseini M, Ebrahimzadeh-Bideskan A. The effects of tramadol administration on hippocampal cell apoptosis, learning and memory in adult rats and neuroprotective effects of crocin. Metab Brain Dis. 2018 Jun;33(3):907-916. doi: 10.1007/s11011-018-0194-6.
15.        Haeri P, Mohammadipour A, Heidari Z, Ebrahimzadeh-Bideskan A. Neuroprotective effect of crocin on substantia nigra in MPTP-induced Parkinson's disease model of mice. Anat Sci Int. 2019 Jan;94(1):119-127. doi: 10.1007/s12565-018-0457-7.
16.       Cerdá-Bernad D, Valero-Cases E, Pastor JJ, Frutos MJ. Saffron bioactives crocin, crocetin and safranal: effect on oxidative stress and mechanisms of action. Crit Rev Food Sci Nutr. 2022;62(12):3232-3249. doi: 10.1080/10408398.2020.1864279.
17.       Kapucu A. Crocin ameliorates oxidative stress and suppresses renal damage in streptozotocin induced diabetic male rats. Biotech Histochem. 2021 Feb;96(2):153-160. doi: 10.1080/10520295.2020.1808702.
18.       Abdulkareem Aljumaily SA, Demir M, Elbe H, Yigitturk G, Bicer Y, Altinoz E. Antioxidant, anti-inflammatory, and anti-apoptotic effects of crocin against doxorubicin-induced myocardial toxicity in rats. Environ Sci Pollut Res Int. 2021 Dec;28(46):65802-65813. doi: 10.1007/s11356-021-15409-w.
19.        Dianat M, Esmaeilizadeh M, Badavi M, Samarbafzadeh A, Naghizadeh B. Protective effects of crocin on hemodynamic parameters and infarct size in comparison with vitamin E after ischemia reperfusion in isolated rat hearts. Planta Med. 2014 Mar;80(5):393-8. doi: 10.1055/s-0033-1360383.
20.        Mohammadipour A, Haghir H, Ebrahimzadeh Bideskan A. A link between nanoparticles and Parkinson's disease. Which nanoparticles are most harmful? Rev Environ Health. 2020 Jul 18;35(4):545-556. doi: 10.1515/reveh-2020-0043.
21.        Eftekharpour E, Fernyhough P. Oxidative Stress and Mitochondrial Dysfunction Associated with Peripheral Neuropathy in Type 1 Diabetes. Antioxid Redox Signal. 2022 Sep;37(7-9):578-596. doi: 10.1089/ars.2021.0152.
22.        AbdelKader G, Abdelaziz EZ, Hassan R, Greish SM, Abogresha NM, Sultan BO, Yousef EM, Morsi S. Protective Effects of Crocin Against Methotrexate-Induced Hepatotoxicity in Adult Male Albino Rats: Histological, Immunohistochemical, and Biochemical Study. Cureus. 2023 Jan 31;15(1):e34468. doi: 10.7759/cureus.34468.
23.       Jin W, Zhang Y, Xue Y, Han X, Zhang X, Ma Z, Sun S, Chu X, Cheng J, Guan S, Li Z, Chu L. Crocin attenuates isoprenaline-induced myocardial fibrosis by targeting TLR4/NF-κB signaling: connecting oxidative stress, inflammation, and apoptosis. Naunyn Schmiedebergs Arch Pharmacol. 2020 Jan;393(1):13-23. doi: 10.1007/s00210-019-01704-4.
24.        Del Re DP, Miyamoto S, Brown JH. RhoA/Rho kinase up-regulate Bax to activate a mitochondrial death pathway and induce cardiomyocyte apoptosis. J Biol Chem. 2007 Mar 16;282(11):8069-78. doi: 10.1074/jbc.M604298200. Epub 2007 Jan 18. PMID: 17234627.
25.        Feidantsis K, Mellidis K, Galatou E, Sinakos Z, Lazou A. Treatment with crocin improves cardiac dysfunction by normalizing autophagy and inhibiting apoptosis in STZ-induced diabetic cardiomyopathy. Nutr Metab Cardiovasc Dis. 2018 Sep;28(9):952-961. doi: 10.1016/j.numecd.2018.06.005.
26.        Cai J, Chen X, Liu X, Li Z, Shi A, Tang X, Xia P, Zhang J, Yu P. AMPK: The key to ischemia-reperfusion injury. J Cell Physiol. 2022 Nov;237(11):4079-4096. doi: 10.1002/jcp.30875. Epub 2022 Sep 22. PMID: 36134582.
27.        Song R, Han S, Gao H, Jiang H, Li X. Crocin alleviates cognitive impairment associated with atherosclerosis via improving neuroinflammation in LDLR-/- mice fed a high-fat/cholesterol diet. Phytother Res. 2022 Mar;36(3):1284-1296. doi: 10.1002/ptr.7384.
28.        Baradaran Rahim V, Khammar MT, Rakhshandeh H, Samzadeh-Kermani A, Hosseini A, Askari VR. Crocin protects cardiomyocytes against LPS-Induced inflammation. Pharmacol Rep. 2019 Dec;71(6):1228-1234. doi: 10.1016/j.pharep.2019.07.007.
29.        Ran Y, Su W, Gao F, Ding Z, Yang S, Ye L, Chen X, Tian G, Xi J, Liu Z. Curcumin Ameliorates White Matter Injury after Ischemic Stroke by Inhibiting Microglia/Macrophage Pyroptosis through NF-κB Suppression and NLRP3 Inflammasome Inhibition. Oxid Med Cell Longev. 2021 Sep 30;2021:1552127. doi: 10.1155/2021/1552127.
30.       Yuan C, Chen Z, Zhou Q. Crocin inhibits KBTBD7 to prevent excessive inflammation and cardiac dysfunction following myocardial infarction. Mol Med Rep. 2023 Jan;27(1):20. doi: 10.3892/mmr.2022.12907
31.        Yang L, Wang B, Zhou Q, Wang Y, Liu X, Liu Z, Zhan Z. MicroRNA-21 prevents excessive inflammation and cardiac dysfunction after myocardial infarction through targeting KBTBD7. Cell Death Dis. 2018 Jul 10;9(7):769. doi: 10.1038/s41419-018-0805-5.
32.        Zhang Y, Wang Z, Lan D, Zhao J, Wang L, Shao X, Wang D, Wu K, Sun M, Huang X, Yan M, Liang H, Rong X, Diao H, Guo J. MicroRNA-24-3p alleviates cardiac fibrosis by suppressing cardiac fibroblasts mitophagy via downregulating PHB2. Pharmacol Res. 2022 Mar;177:106124. doi: 10.1016/j.phrs.2022.106124.
33.        Chen Z, Lu S, Xu M, Liu P, Ren R, Ma W. Role of miR-24, Furin, and Transforming Growth Factor-β1 Signal Pathway in Fibrosis After Cardiac Infarction. Med Sci Monit. 2017 Jan 5;23:65-70. doi: 10.12659/msm.898641.
34.        Mohammadi Y, Zangooei M, Zardast M, Mamashli M, Rezaei Farimani A. The effect of crocin and losartan on TGF-β gene expression and histopathology of kidney tissue in a rat model of diabetic nephropathy. Avicenna J Phytomed. 2023 Mar-Apr;13(2):189-199. doi: 10.22038/AJP.2022.21414.
35.        Li J, Lei HT, Cao L, Mi YN, Li S, Cao YX. Crocin alleviates coronary atherosclerosis via inhibiting lipid synthesis and inducing M2 macrophage polarization. Int Immunopharmacol. 2018 Feb;55:120-127. doi: 10.1016/j.intimp.2017.11.037.
36.        Zhang F, Liu P, He Z, Zhang L, He X, Liu F, Qi J. Crocin ameliorates atherosclerosis by promoting the reverse cholesterol transport and inhibiting the foam cell formation via regulating PPARγ/LXR-α. Cell Cycle. 2022 Jan;21(2):202-218. doi: 10.1080/15384101.2021.2015669.
37.        Malakar AK, Choudhury D, Halder B, Paul P, Uddin A, Chakraborty S. A review on coronary artery disease, its risk factors, and therapeutics. J Cell Physiol. 2019 Aug;234(10):16812-16823. doi: 10.1002/jcp.28350.
38.        Ahmed SF, Shabayek MI, Abdel Ghany ME, El-Hefnawy MH, El-Mesallamy HO. Role of CTRP3, CTRP9 and MCP-1 for the evaluation of T2DM associated coronary artery disease in Egyptian postmenopausal females. PLoS One. 2018 Dec 17;13(12):e0208038. doi: 10.1371/journal.pone.0208038.
39.        Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res. 2009 Jun;29(6):313-26. doi: 10.1089/jir.2008.0027.
40.        Abedimanesh N, Motlagh B, Abedimanesh S, Bathaie SZ, Separham A, Ostadrahimi A. Effects of crocin and saffron aqueous extract on gene expression of SIRT1, AMPK, LOX1, NF-κB, and MCP-1 in patients with coronary artery disease: A randomized placebo-controlled clinical trial. Phytother Res. 2020 May;34(5):1114-1122. doi: 10.1002/ptr.6580.
41.        Askin L, Tibilli H, Tanriverdi O, Turkmen S. The relationship between coronary artery disease and SIRT1 protein. North Clin Istanb. 2020 Oct 1;7(6):631-635. doi: 10.14744/nci.2020.31391.
42.        Abedimanesh N, Bathaie SZ, Abedimanesh S, Motlagh B, Separham A, Ostadrahimi A. Saffron and crocin improved appetite, dietary intakes and body composition in patients with coronary artery disease. J Cardiovasc Thorac Res. 2017;9(4):200-208. doi: 10.15171/jcvtr.2017.35.
43.        Ghorbanzadeh V, Mohammadi M, Dariushnejad H, Chodari L, Mohaddes G. Effects of crocin and voluntary exercise, alone or combined, on heart VEGF-A and HOMA-IR of HFD/STZ induced type 2 diabetic rats. J Endocrinol Invest. 2016 Oct;39(10):1179-86. doi: 10.1007/s40618-016-0456-2.
44.        Jesmin S, Zaedi S, Shimojo N, Iemitsu M, Masuzawa K, Yamaguchi N, Mowa CN, Maeda S, Hattori Y, Miyauchi T. Endothelin antagonism normalizes VEGF signaling and cardiac function in STZ-induced diabetic rat hearts. Am J Physiol Endocrinol Metab. 2007 Apr;292(4):E1030-40. doi: 10.1152/ajpendo.00517.2006.
45.        Ghorbanzadeh V, Mohammadi M, Dariushnejad H, Abhari A, Chodari L, Mohaddes G. Cardioprotective Effect of Crocin Combined with Voluntary Exercise in Rat: Role of Mir-126 and Mir-210 in Heart Angiogenesis. Arq Bras Cardiol. 2017 Jul;109(1):54-62. doi: 10.5935/abc.20170087.
46.        Malvandi AM, Rastegar-Moghaddam SH, Ebrahimzadeh-Bideskan S, Lombardi G, Ebrahimzadeh-Bideskan A, Mohammadipour A. Targeting miR-21 in spinal cord injuries: a game-changer? Mol Med. 2022 Sep 23;28(1):118. doi: 10.1186/s10020-022-00546-w.
47.        Rastegar-Moghaddam SH, Ebrahimzadeh-Bideskan A, Shahba S, Malvandi AM, Mohammadipour A. Roles of the miR-155 in Neuroinflammation and Neurological Disorders: A Potent Biological and Therapeutic Target. Cell Mol Neurobiol. 2023 Mar;43(2):455-467. doi: 10.1007/s10571-022-01200-z.
48.        Ebrahimi V, Rastegar-Moghaddam SH, Mohammadipour A. Therapeutic Potentials of MicroRNA-126 in Cerebral Ischemia. Mol Neurobiol. 2023 Apr;60(4):2062-2069. doi: 10.1007/s12035-022-03197-4.
49.        Mao W, Fan Y, Wang X, Feng G, You Y, Li H, Chen Y, Yang J, Weng H, Shen X. Phloretin ameliorates diabetes-induced endothelial injury through AMPK-dependent anti-EndMT pathway. Pharmacol Res. 2022 May;179:106205. doi: 10.1016/j.phrs.2022.106205.
50.        Hashemzaei M, Rezaee R, Nabatzehi M, Tsarouhas K, Konstantinos Nikolouzakis T, Lazopoulos G, A Spandidos D, Tsatsakis A, Shahraki J. Anti-hypertensive effect of crocin and hesperidin combination in high-fat diet treated rats. Exp Ther Med. 2020 Jun;19(6):3840-3844. doi: 10.3892/etm.2020.8650.
51.        Williams BA, Liu C, Deyoung L, Brock GB, Sims SM. Regulation of intracellular Ca2+ release in corpus cavernosum smooth muscle: synergism between nitric oxide and cGMP. Am J Physiol Cell Physiol. 2005 Mar;288(3):C650-8. doi: 10.1152/ajpcell.00475.2004.
52.        He SY, Qian ZY, Tang FT. Effect of crocin on intracellular calcium concentration in cultured bovine aortic smooth muscle cells. Yao Xue Xue Bao. 2004 Oct;39(10):778-81. PMID: 15700815.
53.        Shafei MN, Faramarzi A, Khajavi Rad A, Anaeigoudari A. Crocin prevents acute angiotensin II-induced hypertension in anesthetized rats. Avicenna J Phytomed. 2017 Jul-Aug;7(4):345-352. PMID: 28884084; PMCID: PMC5580872.
54.        Zhang Y, Cao Y, Liu C. Autophagy and Ischemic Stroke. Adv Exp Med Biol. 2020;1207:111-134. doi: 10.1007/978-981-15-4272-5_7.
55.        Mei ZG, Huang YG, Feng ZT, Luo YN, Yang SB, Du LP, Jiang K, Liu XL, Fu XY, Deng YH, Zhou HJ. Electroacupuncture ameliorates cerebral ischemia/reperfusion injury by suppressing autophagy via the SIRT1-FOXO1 signaling pathway. Aging (Albany NY). 2020 Jul 3;12(13):13187-13205. doi: 10.18632/aging.103420.
56.        Huang Z, Xu J, Huang X, Sun G, Jiang R, Wu H, Shan X, Bao K, Wu Q, Wu H, Tao W. Crocin induces anti-ischemia in middle cerebral artery occlusion rats and inhibits autophagy by regulating the mammalian target of rapamycin. Eur J Pharmacol. 2019 Aug 15;857:172424. doi: 10.1016/j.ejphar.2019.172424.
57.        Sarshoori JR, Asadi MH, Mohammadi MT. Neuroprotective effects of crocin on the histopathological alterations following brain ischemia-reperfusion injury in rat. Iran J Basic Med Sci. 2014 Nov;17(11):895-902.
58.        Zhang X, Fan Z, Jin T. Crocin protects against cerebral- ischemia-induced damage in aged rats through maintaining the integrity of blood-brain barrier. Restor Neurol Neurosci. 2017;35(1):65-75. doi: 10.3233/RNN-160696.
59.        Wang F, Li WL, Shen LJ, Jiang TT, Xia JJ, You DL, Hu SY, Wang L, Wu X. Crocin Alleviates Intracerebral Hemorrhage-Induced Neuronal Ferroptosis by Facilitating Nrf2 Nuclear Translocation. Neurotox Res. 2022 Apr;40(2):596-604. doi: 10.1007/s12640-022-00500-y.
60.        Duan Z, Li H, Qi X, Wei Y, Guo X, Li Y, Wu D, Tian M, Ma L, You C. Crocin attenuation of neurological deficits in a mouse model of intracerebral hemorrhage. Brain Res Bull. 2019 Aug;150:186-195. doi: 10.1016/j.brainresbull.2019.05.023.
61.        An B, Ma Y, Xu Y, Liu X, Zhang X, Zhang J, Yang C. Crocin regulates the proliferation and migration of neural stem cells after cerebral ischemia by activating the Notch1 pathway. Folia Neuropathol. 2020;58(3):201-212. doi: 10.5114/fn.2020.100063.