اثرات محافظتی لوتئولین در مدل ایسکمی مغزی رت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 الف.استادیار، مرکز تحقیقات علوم اعصاب، دانشگاه علوم پزشکی مشهد، مشهد، ایران ب.گروه علوم اعصاب، دانشکده پزشکی، دانشگاه علوم پزشکی مشهد، مشهد، ایران ج.مرکز تحقیقات علوم اعصاب شفا، بیمارستان خاتم‌الانبیاء، تهران، ایران

2 الف.گروه علوم اعصاب، دانشکده پزشکی، دانشگاه علوم پزشکی مشهد، مشهد، ایران ب.دانشجوی پزشکی، مرکز تحقیقات علوم اعصاب، دانشگاه علوم پزشکی مشهد، مشهد، ایران

3 کارشناس ارشد، مرکز تحقیقات علوم اعصاب، دانشگاه علوم پزشکی مشهد، مشهد، ایران

4 دانشجوی پزشکی، کمیته تحقیقات دانشجویی، دانشکده پزشکی، دانشگاه علوم پزشکی مشهد، مشهد، ایران

5 الف.استادیار، مرکز تحقیقات علوم اعصاب، دانشگاه علوم پزشکی مشهد، مشهد، ایران ب.گروه علوم اعصاب، دانشکده پزشکی، دانشگاه علوم پزشکی مشهد، مشهد، ایران

چکیده

مقدمه: نتایج مطالعات اخیر بیانگر اثرات حفاظتی لوتئولین در برابر التهاب و استرس اکسیداتیو هستند. در این راستا، مطالعه حاضر با هدف تعیین اثرات حفاظت لوتئولین بر نوروژنز (Neurogenesis) رفتار و حجم ضایعه در مدل سکته مغزی رت انجام شد.
مواد و روشها: در این پژوهش تجربی از چهار گروه هشت‌ نفری رت نر نژاد ویستار شامل: گروه‌های کنترل، شم و گروه‌های دریافت‌کننده لوتئولین با دوزهای ۱5 و 30 میلی‌گرم بر کیلوگرم وزن بدن متعاقب ایجاد ایسکمی مغزی فوکال استفاده شد. 24 ساعت بعد حجم ناحیه ایسکمی، نتایج آزمون رفتاری روگر نوروژنز در گروه‌های آزمایشی بررسی گردید.
یافته‌ها: تجویز لوتئولین با دوزهای ۱5 و 30 میلی‌گرم بر کیلوگرم وزن به صورت وابسته به دوز سبب کاهش سایز و بهبود آزمون رفتاری سکته شد. در این مطالعه بیان ژن‌های مربوط به نورون‌زایی از قبیل sox2، nestin و Dcx بررسی گردید و نشان داده شد که لوتئولین باعث تغییرات معنادار فاکتورهای نوروژنز نسبت به گروه کنترل نشده است.  
نتیجهگیری: لوتئولین دارای پتانسیل قوی در حفاظت نورونی و پیشگیری از سکته مغزی است. نتایج این مطالعه می‌تواند در مطالعات بعدی در زمینه تشخیص اثرات حفاظت نورونی لوتئولین مفید باشد.

کلیدواژه‌ها


  1. Ovbiagele B, Nguyen-Huynh MN. Stroke epidemiology: advancing our understanding of disease mechanism and therapy. Neurotherapeutics. 2011; 8(3):319.
  2. Amarenco P, Kim JS, Labreuche J, Charles H, Abtan J, Béjot Y, et al. A comparison of two LDL cholesterol targets after ischemic stroke. N Engl J Med. 2020; 382(1):9-19.
  3. Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischemic brain damage. Neuropharmacology. 2008; 55(3):310-8.
  4. González RG. Acute ischemic stroke. Heidelberg, Germany: Springer Verlag GmbH; 2011.
  5. Frank J, Fukagawa NK, Bilia AR, Johnson EJ, Kwon O, Prakash V, et al. Terms and nomenclature used for plant-derived components in nutrition and related research: efforts toward harmonization. Nutr Rev. 2020; 78(6):451-8.
  6. Daglia M, Di Lorenzo A, Nabavi SF, Talas ZS, Nabavi SM. Polyphenols: well beyond the antioxidant capacity: gallic acid and related compounds as neuroprotective agents: you are what you eat! Curr Pharm Biotechnol. 2014; 15(4):362-72.
  7. Ashokkumar P, Sudhandiran G. Protective role of luteolin on the status of lipid peroxidation and antioxidant defense against azoxymethane-induced experimental colon carcinogenesis. Biomed Pharma-cother. 2008; 62(9):590-7.
  8. Qiao H, Dong L, Zhang X, Zhu C, Zhang X, Wang L, et al. Protective effect of luteolin in experimental ischemic stroke: upregulated SOD1, CAT, Bcl-2 and claudin-5, down-regulated MDA and Bax expression. Neurochem Res. 2012; 37(9):2014-24.
  9. Aziz N, Kim MY, Cho JY. Anti-inflammatory effects of luteolin: a review of in vitro, in vivo, and in silico studies. J Ethnopharmacol. 2018; 225:342-58.
  10. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989; 20(1):84-91.
  11. Carmichael ST. Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx. 2005; 2(3):
    396-409.
  12. Gutiérrez-Fernández M, Rodríguez-Frutos B, Ramos-Cejudo J, Vallejo-Cremades MT, Fuentes B, Cerdán S, et al. Effects of intravenous administration of allogenic bone marrow-and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke. Stem Cell Res Ther. 2013; 4(1):11.
  13. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, et al. Heart disease and stroke statistics--2011 update: a report from the American Heart Association. Circulation. 2011; 123(4):e18-209.
  14. Forouzanfar F, Hosseinzadeh H, Ebrahimzadeh Bideskan A, Sadeghnia HR. Aqueous and Ethanolic Extracts of Boswellia serrata Protect Against Focal Cerebral Ischemia and Reperfusion Injury in Rats. Phytother Res.
  15. 2016 ; 30(12): 1954-67. Ginsberg MD. The new language of cerebral ischemia. AJNR Am J Neuroradiol. 1997; 18(8):1435-45.
  16. Ghazavi H, Hoseini SJ, Ebrahimzadeh-Bideskan A, Mashkani B, Mehri S, Ghorbani A, et al. Fibroblast growth factor type 1 (FGF1)-overexpressed adipose-derived mesenchaymal stem cells (AD-MSC FGF1) induce neuroprotection and functional recovery in a rat stroke model. Stem Cell Rev Rep. 2017; 13(5):670-85.
  17. Sinha K, Chaudhary G, Gupta YK. Protective effect of resveratrol against oxidative stress in middle cerebral artery occlusion model of stroke in rats. Life Sci. 2002; 71(6):655-65.
  18. Durukan A, Tatlisumak T. Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav. 2007; 87(1):
    179-97.
  19. Forouzanfar F, Hosseinzadeh H, Ebrahimzadeh Bideskan A, Sadeghnia HR. Aqueous and ethanolic extracts of boswellia serrata protect against focal cerebral ischemia and reperfusion injury in rats. Phytother Res. 2016; 30(12):1954-67.
  20. Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. 1993; 262(5134):
    684-95.
  21. Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet. 1994; 344(8924):721-4.
  22. Sugawara T, Chan PH. Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid Redox Signal. 2003; 5(5):597-607.
  23. Crack PJ, Taylor JM. Reactive oxygen species and the modulation of stroke. Free Radic Biol Med. 2005; 38(11):1433-44.
  24. Li M, Li Q, Zhao Q, Zhang J, Lin J. Luteolin improves the impaired nerve functions in diabetic neuropathy: behavioral and biochemical evidences. Int J Clin Exp Pathol. 2015; 8(9):10112-20.
  25. Kang SS, Lee JY, Choi YK, Kim GS, Han BH. Neuroprotective effects of flavones on hydrogen peroxide-induced apoptosis in SH-SY5Y neuroblostoma cells. Bioorg Med Chem Lett. 2004; 14(9):2261-4.
  26. Fu J, Sun H, Zhang Y, Xu W, Wang C, Fang Y, et al. Neuroprotective effects of luteolin against spinal cord ischemia–reperfusion injury by attenuation of oxidative stress, inflammation, and apoptosis. J Med Food. 2018; 21(1):13-20.
  27. Lindvall O, Kokaia Z. Neurogenesis following stroke affecting the adult brain. Cold Spring Harb Perspect Biol. 2015; 7(11):a019034.
  28. Xie F, Liu H, Liu Y. Adult neurogenesis following ischaemic stroke and implications for cell-based therapeutic approaches. World Neurosurg. 2020; 138:474-80.